团队研制出的光子神经网络的核心是一种光学设备——其中的每个节点拥有神经元一样的响应特征。这些节点采用微型圆形波导的形式,被蚀刻进一个光可在其中循环的硅基座内。当光被输入,接着会调节在阈值处工作的激光器的输出,在此区域中,入射光的微小变化都会对该激光的输出产生巨大影响。
该光学设备的原理在于:系统中的每个节点都使用一定波长的光,这一技术被称为波分复用。来自各个节点的光会被送入该激光器,而且激光输出会被反馈回节点,创造出一个拥有非线性特征的反馈电路。关于这种非线性能模拟神经行为的程度,研究表明其输出在数学上等效于一种被称为“连续时间递归神经网络(CTRNN)”的设备,这说明CTRNN的编程工具可以应用于更大的硅光子神经网络。
泰特团队用一个拥有49个节点的硅光子神经网络来模拟某种微分方程的数学问题,并将其与普通的中央处理单元进行比较。结果表明,在此项任务中,光子神经网络的速度提升了3个数量级。
研究人员表示,这将开启一个全新的光子计算产业。泰特说:“硅光子神经网络可能会成为更庞大的、可扩展信息处理的硅光子系统家族的‘排头兵’”。